整理的算法模板合集: ACM模板
这次比赛好多原题呀…(就是那种稍微拓展了一点的原题)
目录
A、Easy Equation
题目大意:求
x
+
y
+
z
=
k
x+y+z=k
x+y+z=k的方案数,输入为四个数可取的范围。
前缀和差分。
首先一看数据范围是1e6就不可能 O ( n 2 ) O(n^2) O(n2)做,只能 O ( n ) O(n) O(n)。
之前做过一道简化版的题,是求 x + y = z x+y=z x+y=z的方案数,用的好像是什么前缀和映射思想,我忘了,是CF上面的一次比赛题,但是我找不到了…这里是三个,所以把那个方法拓展一下即可。
实际上用前缀和来解决思路特别简单,大致是一个前缀和+递推DP的思想。
因为有三个数相加的方案数
我们用 f[i]
表示i
能够被多少个前两个范围的数(x+y)加起来的方案数,我们直接循环x,那么所有从 x
到 x+b
的数都能被这个数递推过去,方案数+1,我们可以直接用前缀和来维护一个区间+1的操作,这样求得 f
数组,然后我们用同样的思路求g数组,其中g[i]
表示的是i能够被多少个x+y+z的方案数,同样的我们维护一个前缀和差分,再求一次前缀和就是所有能通过x+y+z得到这个数的方案数,我们直接枚举所有d的范围,求和既是答案。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
using namespace std;
const int N = 1e8 + 7, M = 5000007, INF = 0x3f3f3f3f;
long long a, b, c, d;
long long f[N];
long long g[N];
int main()
{
scanf("%lld%lld%lld%lld", &a, &b, &c, &d);
for(int i = 0; i <= a; ++ i){
f[i] ++ ;
f[i + b + 1] -- ;
}
for(int i = 1; i <= a + b; ++ i)
f[i] += f[i - 1];
for(int i = 0; i <= a + b; ++ i){
g[i] += f[i];
g[i + c + 1] -= f[i] ;
}
for(int i = 1 ;i <= a + b + c; ++ i)
g[i] += g[i - 1];
long long ans = 0;
for(int i = 0; i <= d; ++ i)
ans += g[i];
printf("%lld\n", ans);
return 0;
}
B、XTL’s Chessboard
题目大意:弹弹弹
SB题,直接输出2就行了,因为所有的点沿着45度角射出反弹最后都会回到起点,x-1和y-1互质的时候一定会经过角,就会直接反弹原路返回。所以只有起点和终点经过奇数次,答案就是2。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
using namespace std;
const int N = 500007, M = 5000007, INF = 0x3f3f3f3f;
int n, m, t;
int a[N], b[N];
bool vis[N];
int ans;
int main()
{
int x, y;
while(scanf("%d%d%d%d", &n, &m, &x, &y) != EOF && n + m){
printf("2\n");
}
return 0;
}
D、Pokemon Ultra Sun
题目大意:宝可梦们大战,你和对手都有一个血量,每一轮都是你打对手,攻击力为w,每次有p的概率对手掉血,1-p的概率你自己掉血,求比赛轮数的期望。
概率DP板子题…
我们用 f[i][j]
表示我方掉i
血敌方掉j
血的期望。
然后直接输出即可。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
using namespace std;
const int N = 3507, M = 5000007, INF = 0x3f3f3f3f;
int n, m, t;
int hp1, hp2, w;
double f[N][N];
double p;
int main()
{
scanf("%d", &t);
while(t -- ){
scanf("%d%d%d%lf", &hp1, &hp2, &w, &p);
memset(f, 0, sizeof f);
for(int i = 1; i <= hp1; ++ i){
for(int j = 1; j <= hp2; ++ j){
f[i][j] = f[max(0, i - w)][j] * (1 - p) + f[i][max(0, j - w)] * p + 1.0;
}
}
printf("%.6f\n", f[hp1][hp2]);
}
return 0;
}
E、Eat Walnuts
题目大意:一排的核桃,你每次可以从连续的三个中拿走中间的那一个,花费为a[i - 1] * a[i] * a[i + 1]
,求拿的只剩下两个核桃的最小花费。
其实就是一道区间DP的板子题,之前有一道最优矩阵链乘的题,几乎一摸一样。只不过计算方法改了一点。主要是这里需要至少三个核桃才能拿走一个,所以我们需要规定长度至少为3,然后初始化的时候应该初始化f[i][i] = 0; f[i][i + 1] = 0;
,而最优矩阵链乘中两个数表示两个矩阵,所以初始条件和长度不一样,区间DP需要考虑边界,可转移长度,最后才是转移方程。
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int N = 2007, M = 5000007, INF = 0x3f3f3f3f;
int n, m;
int f[N][N];
int a[N];
int main()
{
while(scanf("%d", &n) != EOF && n){
memset(f, 0x3f, sizeof f);
for(int i = 1; i <= n; ++ i){
scanf("%d", &a[i]);
f[i][i] = 0;
f[i][i + 1] = 0;
}
for(int len = 2; len <= n; ++ len){
for(int i = 1; i <= n - len + 1; ++ i){
int j = i + len - 1;
for(int k = i + 1; k < j; ++ k)
f[i][j] = min(f[i][j], f[i][k] + f[k][j] + (a[i] + a[k] + a[j]) * (a[i] + a[k] + a[j]));
}
}
printf("%d\n", f[1][n]);
}
return 0;
}
F、wrestling on road
题目翻译 ♂:
Banana先生和Kazuya先生是新日暮里的著名哲学家。新日暮里的国王范(Van)无法在没有他们的情况下管理帝国,因此他将左右监护人的头衔赋予他们。
由于政治上的差异,他们处于相反的立场。新日暮里每天都有早会,范需要设计两条路线,以便香蕉先生和和也雅先生可以参加早会。使事情变得难以管理的是,如果一条道路(不包括两个终点)既属于香蕉先生的道路又属于Kazuya的道路,那么它们将相互搏斗。
一般而言,新日暮里由n个城市和m条没有自环的双向道路组成,最多有一条道路连接任何两个城市。Banana先生居住在1号城市,Kazuya先生居住在2号城市。n和n − 1城市有两个豪华轿车,他们应该参加早上的会议。更正式地:
如果道路在香蕉先生的路线上,那么它就不能可以在和Kazuya的路线上,反之亦然。(也就是他们的路线不能有交叉)
如果Banana先生应该在n城市使用豪华轿车,而Kazuya应该在n-1城市使用豪华轿车。(也就是🍌要到点n,Kazuya要到点n-1)
比赛的时候时间比较短因为这道题没人过,我都没看这道题
结果又是原题,还是我两周前刚做过的题,正解是LCA,我之前是用树链剖分过的。
还没A,晚上回来补一下
啊,是我看错了,好像不能用树链剖分,因为这不是树…那没事了
应该用tarjan缩点,或者LCA乱搞
题目大意就是判断是否有两条道路,使得没有重边,可以有重点。
//假的树链剖分代码,过不去,我题看错了,等我有空了就补
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int N = 500007, M = 5000007, INF = 0x3f3f3f3f;
const double eps = 1e-6;
int n, m;
int root, mod;
int head[N], ver[M], nex[M], tot;
int a[N], a_after[N];
struct Tree
{
int l, r;
int lz;
int maxv;
}tr[N * 4];
int son[N];
int id[N], fa[N], cnt, deep[N], sizes[N];
int top[N];
void add(int x, int y)
{
ver[tot] = y;
nex[tot] = head[x];
head[x] = tot ++ ;
}
inline void pushup(int p){
tr[p].maxv = max(tr[p << 1].maxv, tr[p << 1 | 1].maxv);
}
inline void pushdown(int p)
{
auto &root = tr[p], &left = tr[p << 1], &right = tr[p << 1 | 1];
if(root.lz == 0)return ;
left.lz += root.lz;
right.lz += root.lz;
left.maxv += root.lz;
right.maxv += root.lz;
root.lz = 0;
}
void build(int p, int l, int r)
{
tr[p] = {l, r, 0, 0};
if(l == r){
tr[p].maxv = a_after[l];
return ;
}
int mid = l + r >> 1;
build(p << 1, l, mid);
build(p << 1 | 1, mid + 1, r);
pushup(p);
}
int query(int p, int l, int r)
{
if(tr[p].l >= l && tr[p].r <= r){
return tr[p].maxv;
}
pushdown(p);
int mid = tr[p].l +tr[p].r >> 1;
int res = 0;
if(l <= mid)res = max(res, query(p << 1, l, r));
if(r > mid)res = max(res, query(p << 1 | 1, l, r));
return res;
}
void modify(int p, int l, int r, int k)
{
if(tr[p].l >= l && tr[p].r <= r){
tr[p].lz += k;
tr[p].maxv += k;
return ;
}
int mid = tr[p].l + tr[p].r >> 1;
pushdown(p);
if(l <= mid)modify(p << 1, l, r, k);
if(r > mid)modify(p << 1 | 1, l, r, k);
pushup(p);
return ;
}
void dfs_son(int x, int father, int deeps)
{
deep[x] = deeps;
fa[x] = father;
sizes[x] = 1;
int max_son = -1;
for(int i = head[x]; ~i; i = nex[i]){
int y = ver[i];
if(y == father)continue;
dfs_son(y, x, deeps + 1);
sizes[x] += sizes[y];
if(sizes[y] > max_son)son[x] = y, max_son = sizes[y];
}
}
void dfs_build(int x, int topfa)
{
id[x] = ++ cnt;
a_after[cnt] = a[x];
top[x] = topfa;
if(!son[x])return ;
dfs_build(son[x], topfa);
for(int i = head[x]; ~i; i = nex[i]){
int y = ver[i];
if(y == fa[x] || y == son[x])continue;
dfs_build(y, y);//每个节点都有从他自己开始的一个轻链
}
}
void update_range(int x, int y, int k)
{
while(top[x] != top[y]){
if(deep[top[x]] < deep[top[y]])swap(x, y);
modify(1, id[top[x]], id[x], k);
x = fa[top[x]];
}
if(deep[x] > deep[y])
swap(x, y);
modify(1, id[x], id[y], k);
}
bool solve(int a1, int a2, int b1, int b2){
update_range(a1, a2, 1);
update_range(b1, b2, 1);
if(tr[1].maxv == 2){
return false;
}
update_range(a1, a2, -1);
update_range(b1, b2, -1);
return true;
}
int t;
int main()
{
scanf("%d", &t);
while(t -- ){
memset(tr, 0, sizeof tr);
memset(head, -1, sizeof head);
tot = 0;
scanf("%d%d", &n, &m);
root = 1;
for(int i = 1; i <= n - 1; ++ i){
int x, y;
scanf("%d%d", &x, &y);
add(x, y);add(y, x);
}
dfs_son(root, 0, 1);
dfs_build(root, root);
build(1, 1, n);
//1~n, 1 ~ n - 1//2~n, 2~n - 1
bool flag = 0;
if(solve(1, n, 2, n - 1))
puts("Banana and kazuya won't be angry!"), flag = 1;
if(!flag && solve(1, n - 1, 2, n))
puts("Banana and kazuya won't be angry!"), flag = 1;
if(!flag)puts("Van is in a dilemma!");
}
return 0;
}
H、Nuclear launch detected
DP
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<cstring>
using namespace std;
const int N = 2e5 + 5;
int n, h, l, r, a[N];
int dp[N][205];
int f(int x) { x = (x%h+h)%h; return x>=l&&x<=r; }
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n >> h >> l >> r;
for(int i=1; i<=n; i++)
{
cin >> a[i];
a[i] = (a[i] + a[i-1])%h;
for(int j=0; j<=min(i-1, h-1); j++)
{
dp[i][j] = max(dp[i][j], dp[i-1][j] + f(a[i]-j));
dp[i][(j+1)%h] = max(dp[i][(j+1)%h], dp[i-1][j] + f(a[i]-j-1));
}
}
int ans = 0;
for(int i=0; i<h; i++) ans = max(ans, dp[n][i]);
cout << ans << '\n';
return 0;
}
I 、Character Wheels
题目大意:给你一个n*n的字符串矩阵,其中n是偶数,我们从外向里编号为1~n,每次输入P表示输出这个矩阵,L、x、t表示第x圈向左(逆时针)转t圈,R同理。
其实就是一个大模拟,会让你转然后输出,我们可以标记一下当前一共需要转多少次,最后输出的时候直接判断一下画图输出即可,因为只有四种情况,毕竟正方形,转四圈就会转回来,然后一直是一个循环节,所以我们只需要考虑%4,分别画图计算出转0,1,2,3次的位置输出即可,不用真的每次都把图转过来,这样写出来代码比较简单。(输入字符还是cin
好用,不用担心什么奇怪的换行符,空格符,输出的时候可以用printf
快一点)
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
using namespace std;
const int N = 107, M = 5000007, INF = 0x3f3f3f3f;
int n, m;
int a[N];
char g[N][N], op;
int num;
int rota[N];//rota[i]表示第i圈要顺时针转多少圈
int get_num(int x, int y)//得到圈数,画个图就好
{
int minv = min(x, y);//一侧
int maxv = n + 1 - max(x, y);//另一侧
return min(minv, maxv);//最小既是圈数
}
void print()
{
for(int i = 1; i <= n; ++ i){
for(int j = 1; j <= n; ++ j){
num = get_num(i, j);
int t = rota[num];
if(t == 1)
printf("%c", g[n + 1 - j][i]);//自己画图理解
else if(t == 2)
printf("%c", g[n + 1 - i][n + 1 - j]);
else if(t == 3)
printf("%c", g[j][n + 1 - i]);
else printf("%c", g[i][j]);
}
puts("");
}
}
int main()
{
scanf("%d", &n);
for(int i = 1; i <= n; ++ i){
for(int j = 1; j <= n; ++ j){
cin >> g[i][j];
}
}
scanf("%d", &m);
while(m -- ){
cin >> op;
if(op == 'P'){
print();
}
else if(op == 'L'){
int x, t;
scanf("%d%d", &x, &t);
rota[x] -= t;
while(rota[x] < 0)//顺时针转3圈等于逆时针转1圈
rota[x] += 4;
}
else {
int x, t;
scanf("%d%d", &x, &t);
rota[x] += t;
rota[x] %= 4;
}
}
return 0;
}
J、K-th route
图我收了
待补。
先放一个大佬的代码:
#include <bits/stdc++.h>
using namespace std;
#define rep(i,h,t) for (int i=h;i<=t;i++)
#define dep(i,t,h) for (int i=t;i>=h;i--)
#define ll long long
const int N=3e6;
ll f[N],a,b,c,d;
int main()
{
ios::sync_with_stdio(false);
int T;
cin>>T;
while(T--)
{
int x,y,k;
cin>>x>>y>>k;
if (k>(x+1)*(y+1)-1||x+y>k||(k-x-y)%2==1)
{
cout<<"NO"<<endl;
} else
{
cout<<"YES"<<endl;
int t=k-x-y;
int f=t/(2*y);
int x1=0,y1=0;;
rep(i,1,f)
{
x1+=2;
rep(j,1,y) cout<<"E";
cout<<"S";
rep(j,1,y) cout<<"W";
cout<<"S";
}
f=(t%(2*y))/2;
if (x1<x-1)
{
rep(i,1,f) cout<<"E";
cout<<"S";
rep(i,1,f) cout<<"W";
cout<<"S";
x1+=2;
} else
{
rep(i,1,f)
{
y1+=2;
cout<<"SENE";
}
}
rep(i,x1,x-1) cout<<"S";
rep(i,y1,y-1) cout<<"E";
cout<<endl;
}
}
return 0;
}