luogu P3398 仓鼠找sugar(树链剖分、求树上两条路径有没有交点,爽!)

整理的算法模板合集: ACM模板


在这里插入图片描述
舒服,一次敲160行代码一次编译通过一次AC是真的爽!

虽然这道题可以当作简单版的树链剖分板子题了hhh

要求的是两条路径有没有交点,正解是LCA玄学证明,看的我有点懵,但是这道题可以用树链剖分呀,1e5的数据我们 n l o g n nlogn nlogn的树链剖分随便做。

问两条路径有没有交点,实际上我们可以直接用树链剖分直接暴力跑还不会超时,真的爽!我们只需要每次暴力将两条路径权值+1,然后线段树维护一个最大值,看 tr[1].maxv 是不是等于2,如果等于2说明一定有一个点被赋值两次,所以一定是交点!(就算要找交点的id也可以直接找链接

需要注意的是我们每次查询完一次之后要把他们再减掉,不然会对后面的答案造成影响,然后就是非常简单好写的树链剖分啦 (~ ̄▽ ̄)~

#include<cstdio>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<cstring>

using namespace std;
typedef long long ll;
const int N = 500007, M = 5000007, INF = 0x3f3f3f3f;
const double eps = 1e-6;

int n, m;
int root, mod;
int head[N], ver[M], nex[M], tot;
int a[N], a_after[N];
struct Tree
{
    int l, r;
    int lz;
    int maxv;
}tr[N * 4];
int son[N];
int id[N], fa[N], cnt, deep[N], sizes[N];
int top[N];

void add(int x, int y)
{
    ver[tot] = y;
    nex[tot] = head[x];
    head[x] = tot ++ ;
}

inline void pushup(int p){
    tr[p].maxv = max(tr[p << 1].maxv, tr[p << 1 | 1].maxv);
}

inline void pushdown(int p)
{
    auto &root = tr[p], &left = tr[p << 1], &right = tr[p << 1 | 1];
    if(root.lz == 0)return ;
    left.lz += root.lz;
    right.lz += root.lz;
    left.maxv += root.lz;
    right.maxv += root.lz;
    root.lz = 0;
}

void build(int p, int l, int r)
{
    tr[p] = {l, r, 0, 0};
    if(l == r){
        tr[p].maxv = a_after[l];
        return ;
    }
    int mid = l + r >> 1;
    build(p << 1, l, mid);
    build(p << 1 | 1, mid + 1, r);
    pushup(p);
}

int query(int p, int l, int r)
{
    if(tr[p].l >= l && tr[p].r <= r){
        return tr[p].maxv;
    }
    pushdown(p);
    int mid = tr[p].l +tr[p].r >> 1;
    int res = 0;
    if(l <= mid)res = max(res, query(p << 1, l, r));
    if(r > mid)res = max(res, query(p << 1 | 1, l, r));
    return res;
}

void modify(int p, int l, int r, int k)
{
    if(tr[p].l >= l && tr[p].r <= r){
        tr[p].lz += k;
        tr[p].maxv += k;
        return ;
    }
    int mid = tr[p].l + tr[p].r >> 1;
    pushdown(p);
    if(l <= mid)modify(p << 1, l, r, k);
    if(r > mid)modify(p << 1 | 1, l, r, k);
    pushup(p);
    return ;
}

void dfs_son(int x, int father, int deeps)
{
    deep[x] = deeps;
    fa[x] = father;
    sizes[x] = 1;
    int max_son = -1;
    for(int i = head[x]; ~i; i = nex[i]){
        int y = ver[i];
        if(y == father)continue;
        dfs_son(y, x, deeps + 1);
        sizes[x] += sizes[y];
        if(sizes[y] > max_son)son[x] = y, max_son = sizes[y];
    }
}

void dfs_build(int x, int topfa)
{
    id[x] = ++ cnt;
    a_after[cnt] = a[x];
    top[x] = topfa;
    if(!son[x])return ;
    dfs_build(son[x], topfa);
    for(int i = head[x]; ~i; i = nex[i]){
        int y = ver[i];
        if(y == fa[x] || y == son[x])continue;
        dfs_build(y, y);//每个节点都有从他自己开始的一个轻链
    }
}

void update_range(int x, int y, int k)
{
    while(top[x] != top[y]){
        if(deep[top[x]] < deep[top[y]])swap(x, y);
        modify(1, id[top[x]], id[x], k);
        x = fa[top[x]];
    }
    if(deep[x] > deep[y])
        swap(x, y);
        modify(1, id[x], id[y], k);
}


int main()
{
    memset(head, -1, sizeof head);
    scanf("%d%d", &n, &m);
    root = 1;
    for(int i = 1; i <= n - 1; ++ i){
        int x, y;
        scanf("%d%d", &x, &y);
        add(x, y);add(y, x);
    }
    dfs_son(root, 0, 1);
    dfs_build(root, root);
    build(1, 1, n);
    while(m -- ){
        int a1, a2, b1, b2;
        scanf("%d%d%d%d", &a1, &a2, &b1, &b2);
        update_range(a1, a2, 1);
        update_range(b1, b2, 1);
        if(tr[1].maxv == 2){
            puts("Y");
        }
        else puts("N");
        update_range(a1, a2, -1);
        update_range(b1, b2, -1);
    }
}


©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页